
AO-A104 468 SRI INTERNATIONAL MENLO PARK CA COMPUTER SCIENCE LAB F/S 9/2
-7OB..frl A STUCY IN EXECUTABLE ALGEBRAIC FORMAL SPECIFICATION. (U)

JUL 81 J A OGUEN, J MESEBUER N0001 A-C-0296

UNCLASSIFIEO

EhEI///EEEEEEEE
E/lEEEll/l//EE
////IIum/////u
EIIIIIII/E//E7



.4'

OBJ-1, A STUD EXECUTABLE,3 ALGEBRAIC FORMAL
SPECIFICATION

C

C

Final Report, Fiscal Year 1980

July 1981
r

3 i By: Joseph A. Goguen, Senior Computer ScientistFo Jose Meseguer, Computer Scientist
*I Computer Science Laboratory,0 Computer Science and Technology Division3e

r 
Prepared for:

AIII Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217 " ' -- 'pproved

• Attention: Dr. Robert Grafton - j - . . IC its

z 
SRI Project 1350-100829
Contract No. N00014-8"296

z. SRI International

C E 333 Ravenswood Avenue A.- I Menlo Park, California 94025* (415) 326-6200

Cable: SRI INTL MPK
TWX: 910-373-2046

• " - 1?. .; ' 2



QlJ-1, A §TUDY IN j5XECUTABLE
ALGEBRAIC FORMAL

S$PECIFICATION.

Final Report, Fiscal Year 1980

'°
J u IV,,, 81

By: Joseph A/Goguenj Senior Computer Scientist
JoseMeseguer, Computer Scientist

Computer Science Laboratory
Computer Science and Technology Division

Prepared for:

Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Attention: Dr. Robert Grafton

SRI Project 1350-100
Contract No. N00014-80-0296

Approved: /

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Vice President and Director

Computer Science and Technology Division



Table of Contents

I. REVIEW OF PROBLEM AND APPROACH 1
II. PROGRESS 3

1. Ianlementationa 3
2. A ni iat an d ZXAgWj.a 3
3. Theoreic.al Foundat.ions 4
4. work on Related Z cification Laugna 5
5. PublIcations 6

III. RESULTS IN PROGRESS 7
1. Imnlementations 7
2. Foundattong 8

APPENDICES 9
A OBJT SUGGESTIONS, BUGS AND COMMENTS 10
B PROGRAMMING LANGUAGE DEFINITION 15
C SYMBOLTREE SPECIFICATION 33
D SPECIFICATION OF GRAPHS AND PATHS 42
E TECHNIQUES FOR HIGHER ORDER SPECIFICATIONS AND OTHER SURPRISES 46
F PARTIAL ALGEBRAS WITH EQUATIONALLY DEFINED DOMAINS 53
G STRICT ERROR ALGEBRAS DEFINED BY TESTS 57
H MODEL-THEORETIC CHARACTERIZATION OF RELATIONAL CLASSES OF PROGRAM 60

SCHEME INTERPRETATIONS
REFERENCES 60

' > IC

, Li



I. REVIEW OF PROBLEM AND APPROACH

As hardware becomes less expensive, it is increasingly appropriate and

important to put greater emphasis on reducing the cost of software. It is

well known that a great deal of the Cost Of software arises in debugging, and

particularly in debugging small changes in large programs during the process

of maintaining them. Moreover, it seems clear that a major contributing

factor to difficulties of this kind is the generally poor quality of

documentation of such large programs, so that the programmer who has to do the

maintenance has great difficulty in determining the effects of changes which

he makes in the code. It is becoming increasingly clear to the computer

science community that formal program specification is promising as a

solution, and that specialized specification languages are helpful in

expressing such program specifications.

The goal of this research has been to develop a formal and executable

algebraic specification language which can be used to specify a variety of

application programs, such as database systems, compilers and interpreters for

programming languages, and business systems. An advantage of formality in

this context is that each specification has a unique unambiguous meaning, so

that it is actually meaningful to ask whether or not a given program in fact

satisfies a given specification. An advantage of executability is that test

cases can be run directly on the specification, to examine properties of

programs before they are written, and to help in debugging specifications.

The latter is important because large specifications, like large programs, are

usually wrong as first written.

We have been investigating the utility of a number of potential advantages of

the algebraic approach, including the following:

1. Achievement of a high level of modularity in a natural way;

2. Achievement of a high level of abstraction in a natural way;

3. The possibility of executing test cases;

4I. User definition of data types and control structures, using any
desired syntax, including pre-fix, post-fix, and "mix-fix"
operators, as well as coercions;

5. The specification of error and exception conditions, as well as
their handling, and recovery;



6. The use of parameterized abstract modules as a method for
structuring specifications;

7. Algorithms for checking consistency and other desirable properties
of specifications (e.g., the Knuth-Bendix algorithm); and

8. Provision of a completely rigorous semantics for all these
features.
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II. PROGRESS

This section describes the progress which we have made on this project.

1. Implementations

J. Tardo has provided a new implementation of OBJ, called OBJT20, which fixes

most of the bugs discovered in his previous OBJT implementation. Both OBJT

and OBJT20 are currently running on SRI's DEC-20 system, but we will soon

retire the old OBJT, and rename the new OBJT20 to OBJT. The bugs found in

OBJT are documented in a memorandum, reproduced in Appendix A here, based on

our extensive experience using OBJT.

The new OBJT20 implementation runs faster, takes less space, permits lower

case letters, supports TOPS20-style command completion with the <escape>

character, and allows arbitrarily long file names. Moreover, as described in

detail in Appendix A, it corrects many of the bugs which we found in OBJT.

The only disadvantage is that it will not run on DEC-10 machines, but only on

20s. Joseph Tardo is a student at UCLA whose Just completed thesis[Tardo 81]

is on these implementations; he is now working at DEC.

2. AR21catU.a wag AndaF.1.u
J. Goguen and K. Parsaye-Ghomi have written a paper entitled "Algebraic

Denotational Semantics using Parameterized Abstract Modules" which gives some

new techniques for defining the semantics of programming languages, based on

the features of OBJ. These techniques are illustrated with the definition of

a strongly typed programming language having integer and boolean expressions,

conditionals, iteration, block structure, and side-effect-only procedures

which can also be passed as parameters. Because procedures can be passed as

values, and because the language is strongly typed, the type system must be

higher order.

One interesting result of this research was a correspondence between some of

the basic constructions in denotational semantics, and some definitions in the

OBJT library of basic parameterized objects. For example, the

denotationalists' Cartesian product of domains corresponds to PAIR in

<OBJT>LIB.OBJ, and the denotationalists function domain construction (usually

denoted by "arrow") corresponds to ARRAY.

The paper was presented at the "International Conference on Formalization of

Programming Concepts," held in Peniscola, Spain, this April, and has appeared

3
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in the proceedings[Goguen & Parsaye-Ghomi 81]. An improved version of the

language definition is reproduced in Appendix B of this report. This version

shows better how the OBJ library of parameterized specifications is used; it

better illustrates the compilation of an interpreter, and it has better

mnemonics and better test cases. Many people have been surprised at how short

and modular is the complete definition of this fairly nontrivial programming

language, and how easy it is to modify it to get definitions of related

languages.

Goguen has defined a new data type, called symboltree, in OBJ. The purpose of

this data type is to provide for fast checking of certain information, such as

the types of variables, during interactive editing. The definition, and a

large number of test cases showing how the operations of the data type work,

is given in Appendix C of this report.

K. Parsaye-Ghomi, with A. B. C. Sampaio of UCLA, has written a specification

of a hardware multiplexor in OBJT; a rough draft paper exists.

In response to a challenge from Prof. H. Reichel (of Leipzig), we have shown

how to define graphs, and paths in a graph, using the OBJ error algebra

formalism, rather than his formalism using partially defined operations. The

OBJT code is given in Appendix F. This example is also referred to in Appendix

F.

We have discovered some rather tricky methods to achieve certain effects which

it might seem cannot be done in OBJT, such as higher order operations,

defining the natural numbers from the integers, and imposing new equations on

old objects. These are illustrated in Appendix E to this report.

Meseguer and Goguen are working hard on the basic theory of error algebras

which underlies OBJ's approach to error definition, handling, and recovery.

Although a number of surprising and subtle difficulties have been uncovered,

we are convinced that it will be possible to get correct versions of all the

basic algorithms needed for OBJ-1. Current efforts are centered on underlying

semantic issues, and on the relationship to partial algebras.

We have found a small but vicious flaw in the usual deductive system for

many-sorted equational logic, as used for example in most work on abstract
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data types; rather shockingly, this system is not sound. Not only have we

given some new axioms which are sound and complete, but we have found

sufficient conditions such that the old deduction system works anyway[Goguen &

Meseguer 81]. Since there are so many people using equations now, it seems

appropriate that this paper reach the fairly broad audience which reads

SIGPLAN Ngtices. A full version of this paper, with all the proofs, is in an

advanced stage of preparation.

Meseguer has written a deep paper entitled "A Birkhoff-like Theorem for

Algebraic Classes on Interpretations of Program Schemes" which was also

presented at the Peniscola Conference, and appears in its proceedings[Meseguer

81]. This work, which is summarized in Appendix G to this report, follows up

an earlier paper "Varieties of Chain-complete Algebras" which appeared in the

prestigious special issue of the Journal f 2=r an Ap2lid Algebra honoring

the sixtieth birthday of Professor Saunders MacLane of the University of

Chicago[Meseguer 80].

K. Parsaye-Ghomi has developed, as part of his nearly completed Ph.D.

dissertation at UCLA, a method for extending OBJ to handle higher order

operations and equations. We have found that this would be extremely useful

in the specification of programming languages, as illustrated in[Goguen &

Parsaye-Ghomi 81]. The thesis and some papers based on it should be available

soon.

4. Mork = Related Specification jaagu

R. Burstall and J. Goguen have written an informal introduction to their

powerful specification language CLEAR[Burstall & Goguen 81]. This paper,

which will appear in the Academic Press book of Liege lectures, with papers of

Dijkstra, Boyer and Moore, and Manna, includes a sophisticated specification

of a garbage collector.

Burstall and Goguen are also working on the design of a much more

user-oriented specification language with the same underlying semantics as

CLEAR; this new language is to be called ORDINARY, as in some ways it also

builds on the previous generation SRI specification language SPECIAL[Levitt,

Robinson & Silverberg 79]. A draft report is available on this subject[Goguen

& Burstall 80a].

Burstall and Goguen are also working on a program design system which will be
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based on their previous work on specification. This system is called CAT, and

a concept piece outlining their intentions for it is available as an SRI

technical reportLGoguen & Burstall 80b and is included with this report. One

general idea is to construct a program transformation system which explicitly

addresses the very important fact that in order to verify correctness of an

application of a transformation, it is necessary to know some parts of the

theory of the program, and to understand how various parts of the theory fit

together with various parts of the program.

(Burstall & Goguen 78] gives a complete formal semantics for CLEAR, the first

time that denotational semantics has been given for a specification language.

[Goguen & Burstall 783 gives the mathematical background on theories on which

[Burstall & Goguen 78) is based; we have just completed final revisions of

this paper for publication.

[Goguen 80] gives foundations of OBJ, in particular for the use of rewrite

rules to implement initial algebras, and or using the Knuth-Bendix algorithm

for automatic verification for algebraic specifications.

5. Publications

This subsection lists papers, either published or submitted, which have been

supported in whole or in part by this project. It also includes Ph.

D. theses.

1. Burstall, R. M., and Goguen, J. A. The Semantics of CLEAR, a
Specification Language. In Proceedings of the 1979 Copenhagen
Winter School on Abstract Software Specification, Lecture Notes in
Computer Science, volume 86, pages 292-332. Springer-Verlag, 1980.

2. Burstall, R. M. and Goguen, J. A. An Informal Introduction to
CLEAR, a Specification Language. In Boyer, R. and Moore, J
(editor), The Correctness Problem in Computer Science, . Academic
Press, 1981.

3. Goguen, J. A. How to Prove Algebraic Inductive Hypotheses without
Induction: with applications to the correctness of data type
representations. In W. Bibel and R. Kowalski (editor),
Proceedings, 5th Conference on Automated Deduction, pages 356-373.
Springer-Verlag, Lecture Notes in Computer Science, volume 87,
1980.

4. Goguen, J. A. and Burstall, R. M. Some Fundamental Properties of
Algebraic Theories: a Tool for Semantics of Computation. Technical
Report, Dept. of Artificial Intelligence, University of Edinburgh,
1978. DAI Research Report No. 5; to appear in Theoretical Computer
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Science.

5. Goguen, J. A. and Burstall, R. M. An Ordinary Design. Technical
Report, SRI International, 1980. Draft report.

6. Goguen, J. A., and Burstall, R. M. CAT, a System for the
Structured Elaboration of Correct Programs from Structured
Specifications. Technical Report, SRI, International; Computer
Science Lab, 1980. Based on unpublished working draft, UCLA and
SRI, 1979.

7. Goguen, J. A. and Meseguer, J. Completeness of Many-sorted
Equational Logic. 1981. to appear, SIGACT Newsletter.

8. Goguen, J. A. and Parsaye-Ghomi, K. Algebraic Denotational
Semantics using Parameterized Abstract Modules. In J. Diaz and
I. Ramos (editor), Formalizing Programming Concepts, pages 292-309.
Springer-Verlag, Peniscola, Spain, 1981. Lecture Notes in Computer
Science, volume 107.

9. Meseguer, J. Varieties of Chain-Complete Algebras. Journal of Pure
and Applied Algebra 19:347-383, 1980.

10. Meseguer, J. A Birkhoff-like Theorem for Algebraic Classes of
Interpretations of Program Schemes. In J. Diaz and I. Ramos
(editor), Formalization of Programming Concepts, pages 152-168.
Springer-Verlag, Peniscola, Spain, 1981. Lecture Notes in Computer
Science, volume 107.

11. Parsaye-Ghomi, K. Higher Order Data Types. PhD thesis, UCLA,
Computer Science Department, 1981. Forthcoming.

12. Tardo, J. The Design, Specification and Implementation of OBJT: A
Language for Writing and Testing Abstract Algebraic Program
Specifications. PhD thesis, UCLA, Computer Science Department,
1981.

III. RESULTS IN PROGRESS

This section sketches some results which are now in progress.

1. Imolementations

One of the basic ideas behind OBJ is to regard equations as rewrite rules, so

that techniques such as the Knuth-Bendix algorithm can be used for execution

and verification. D. Smallberg of UCLA is working on a version of the

reduction and Knuth-Bendix algorithms which can handle so-called permuting

axioms. This system, called KB, is being written in C, to run on VAX

machines. It will not have all the features of OBJT, such as mix-fix syntax

and error handling, but it will serve as testbed for the eventual integration

of these ideas in an OBJ-1 system. The design and implementation of KB is
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Smallberg's Ph.D. thesis topic.

Also, J. Weiner of the University of New Hampshire has begun work on an

implementation of OBJ in Prolog. This should be more efficient than the

current Rutgers-UCI LISP implementation, although it will not include all its

features. It will also be highly portable.

2. onain

We are making significant progress on the difficult problems arising in the

theory of error algebras, by making use of advanced mathematical ideas in

works such as[Coste 77) andLGabriel Ulmer 71). Some of our ideas are

described in Appendices F and G. If successful, it appears that this approach

will subsume all the various algebraic models which have been so far given in

the literature. A major difficulty which we foresee is attempting to convey

the ideas in a way which will be understandable to the computer science

community at large.



APPENDICES

It is intended that the material in these appendices should provide a good

practical background for OBJT users, as supplements to[Goguen & Tardo 791

and[Tardo 81].
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A OBJT SUGGESTIONS, BUGS AND COSGEfTS

This is a compendium of various discoveries about OBJ and its implementations.

Many comments (e.g., in 1.a below) relate to the implementations at SRI-KL,

namely OBJT and OBJT20, and are so indicated, while others will apply to any

implementation based on the same design. Also, note that many of the OBJT

bugs have been corrected in OBJT20. Eventually OBJT20 will supersede OBJT and

also acquire its name.

1. Inur/LQu

a. There is no way to see the result of performing an IMAGE. Perhaps there

could be a flag which if set would cause the result of performing an IMAGE to

be displayed whenever IMAGE is executed. This flag could also control whether

or not an OUT file would include these result displays.

This raises the question of whether it is desirable to display built-in

objects such as INT. One possibility is to display just the syntax, with a

comment (900) that this is a built-in object; a second possibility is to

display a set of equations which define the object, even though the object is

not actually implemented by the corresponding rewrite rules.

b. The parsers provide no help when an expression cannot be parsed. It is a

difficult but interesting problem to design a parser which will provide useful

feedback to the user in such cases. Probably it should be interactive.

2. IMAGE

a. Why should it be permitted to apply IMAGE to built-in objects such as INT?

(One explanation is that one could then define NAT from INT; but there is a

better way to do that, e.g., using a unary prefix operator, such as I_ INT

-> NAT, and a suitable error equation.)

b. We could define a new OBJ "parameterized object" to have the form SORTS

(<param-sort-list>) <new-sort-list> / <old-sort-list> [with the latter

optional] for its SORTS declaration, and otherwise the same syntax as present

OBJT objects. Furthermore, we should allow only such parameterized objects to

be imaged, with only their parameter sorts being mapped. Furthermore, if not

all parameter sorts are actually mapped, then the resulting IMAGE object is

also parameterized, and this should be indicated in the same way, with

parentheses.

10



c. It should not be permitted to have duplicate copies of ANY objects around,

unless they have different names for the object and for new sorts. In

particular, IMAGE should not create duplicate objects, either of BOOL or of

any other objects.

3. =I lAPERMUTING

a. The p-esent implementations have a bug somewhere; for example, ARRAY with

ADD as a PERMUTING operator produces strange LISP-level error messages when

SYMBOLTABLE (defined by IMAGE as an ARRAY of STACKs) is run. Similar strange

things happen if it is RUMed without the PERMUTING declaration.

b. EQ is not implemented for permuting objects; it should not be very

difficult to extend it to do so.

c. It would be useful to be able to set the environment of a RUN to any

desired object. The syntax
RUN / <obj-list> <exp> NUR

is one possibility, with default (if there is no "/ <obj-list>") to the

previous object, as at present.

4. Eiles

a. It would be nice to be able to save OBJT working states. (Using the

operating system SAVE seems to use a lot of memory.) More generally, it would

be nice to have an incremental object management facility.

5. Updating Objects

a. There are many cases where one wants to enrich an existing object with some

new operations, or even some new sorts, and it is a drag to have to give a new

name. Even worse, one might like to take an existing large definition and

evolve it to serve some new purpose by changing old objects. It would be very

nice if there were some systematic way of doing this. Here is a suggestion:

OBJ <id> / <id> .... JBO, where <id> is an identifier, would create a new

object <id> which enriches the old one, now designated <id>.-1; and all old

references to the old object <id> now updated to become references to <id>.-1.

This process could be repeated to yield objects <id>.-2, <id>.-3 etc.

6. Assoaiativitl

11
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OBJT and OBJT20 implement something which is fairly close to associativity,

but more efficient to run; thus, it is dangerous to rely on associativity

working correctly in complex cases. An associative-operator, pattern-matching

algorithm could be the basis of a new implementation. It should be possible

to do this in such a way that the simple cases are still executed efficiently.

T. KnthBedl JAesL

It is far from clear how to implement a Knuth-Bendix algorithm which handles

all OBJ features, including errors, conditional equations, associativity and

permutativity. The current implementation however, does not always run

correctly even on classical cases which involve none of these features.

8. Syntax

a. It would be convenient for some applications to be able to define

operations with result a tuple of values of specified sorts (this is called

"co-arity" in the algebraic literature). One also needs to be able to

"untuple" such values. For this, one might build in operations, denoted say

1', 20, 30, ... to extract (respectively) the first, second, third, ...

component.

b. Equations of the form
AS S: (X = BAD IF P(X))

which would be very useful for defining subtypes, such as NAT as a subtype of

INT, are not accepted. (This could be done by setting S = NAT, giving a

coercion INT -> NAT, and letting P(X) be X < 0.)

c. (HIDDEN) does not work correctly in OBJT; the first time that an operation

declared HIDDEN is used inside the object where it is declared, one gets an

"abnormal termination" warning and is thrown out of the object. (This has

been corrected in OBJT20.)

d. It would be nice to have a way to encapsulate a number of previously

defined objects, declaring all but some subset of their operations to be

HIDDEN. (See ORDINARY for one approach.)

9. • =lt-=in Ob.tents

a. The type NAT of natural numbers is not built-in. It should be, with the

obvious coercion from NAT to INT.

12



b. It would be nice if the quotes (e.g., 'A, 'B, etc.) were not necessary for

type ID of identifiers.

c. OBJT evaluates some BOOLean expressions wrong. For example,
RUN T AND (T AND T) NUR

yields the result "T AND T". Similarly for many other truth values and

connectives. (This has been corrected in OBJT20.)

10. Trial =u AnoXing

a. Input/Output

Spacing conventions are irregular and sometimes confusing. (These have all

been corrected in OBJT20.)

(1). Comments received from a file are treated reasonably, but comments

acquired directly from the user are not in OBJT (e.g., typing

>*** THIS IS A
TWO LINE TEST OF COMMENTS. 'r'

at a terminal produces a rather odd distribution of characters).

(2). For input read from a file, warnings after a RUN skip a line, and the

next RUN is right after the warning. (e.g.,

>RUN .........

warning: .........
>RUN

which gives the impression that warning goes with the 2nd RUN).

(3). The built-in OBJT editor in not so easy to use; it would probably be

better to use something like EMACS.

b. Syntax

(1). OBJ should not object to using numbers as operator symbols. Of course,

ambiguities might arise, but overloading constants is no worse than

overloading operators like + and *. (This is corrected in OBJT20.)

(2). It is actually difficult to use keywords spelled backwards as

terminators, because one makes spelling errors; syntax like

OBJ ... ENDOBJ
RUN ... ENDRUN
IM ... ENDIM

would be easier to remember and to use correctly.

13



(3). The name "TEST" for the flag which oauses OBJ to interpret all RUNs as

RUMs is not very suggestive; for example, "RUM" would be better.

1
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B PROGRAMMING LANGUAGE DEFINITION

This is an improved version of the programming language definition in (Goguen

& Parsaye-Ghomi 81).

[PHOTO: Recording initiated Mon 6-Jul-81 5:52PM]

Link from GOGUEN, TTY 10

TOPS-20 Command processor 3A(37)-3
End of <GOGUEN>COMAND.CMD.2
@OBJT20

***OBJT 4/17/81

LISP

242 msec CPU (0 msec GC), 2831 usec clock, 64 conses

(REALLOC 10000 10000 10000 10000 310000)
OBJT20 Running at 411067 Load 1.57 Used 0:03:40.2 in 1:22:19

(SBEGIN)

IN LIB MDD NI

**' HERE IS A BASIC LIBRARY OF PARAMETERIZED TYPES *'

OBJ PAIR
SORTS PAIR LEFT RIGHT
OK-OPS

...;_> : LEFT RIGHT -> PAIR
LEFT_ : PAIR -> LEFT

RIGHT_ : PAIR 
-> RIGHT

LEFT : LEFT
RIGHT : RIGHT
P : PAIR

OK-EWS
(LEFT < LEFT ; RIGHT > = LEFT)
(RIGHT < LEFT ; RIGHT > = RIGHT)
(< LEFT P ; RIGHT P > = P)

JBO

15
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OBJ ARRAY / BOOL
SORTS ARRAY INDEX ELEMENT
OK-OPS

NIL-ARRAY ->ARRAY
PUT INDEX ELEMENT ARRAY ->ARRAY
-[-I. ARRAY INDEX ->ELEMENT
_IN_ INDEX ARRAY ->BOOL

ERR-OPS
UNDEF :INDEX -> ELEMENT

VARS
A :ARRAY
I I' INDEX
ELM ELEMENT

OK-EQNS
(PUT(I,ELM,A)[ I J=ELM)
CPUT(I,ELM,A)[ I' ]=A (I' I IF NOT I = '
(I IN NIL-ARRAY z F)
(I IN PUT(I',ELM,A)= I I'V OR I IN A)

ERR-EQNS
(A [ I I)=UNDEF(I)IF NOT I IN A)

JBO

OBJ LIST / BOOL
SORTS LIST ELEMENT
OK-OPS

NIL ->LIST
- ELEMENT -> LIST

:LIST LIST -> LIST (ASSOCIATIVE)
EMPTY? LIST ->BOOL
FIRST LIST ->ELEMENT
REST LIST -> LIST

ERR-OPS
NO-FIRST ->LIST
NO-REST ->LIST

VARS
L :LIST
E El ELEMENT

OK-EQNS
(NIL ;L x L)
(L ; NIL z L)
(EMPTY?(NIL)= T)
(EMPTY?(E): F)
(EMPTY?(M E)z F)
(FIRST(E ;L)= E)
(REST(E ;L)= L)
(FIRST(E)= E)
(REST(E)= NIL)

ERR-EQIS
(FIRST (NIL): NO-FIRST)
(REST(NIL)z NO-REST)

16



JBO

OBJ STACK / BOOL
SORTS STACK ELEMENT
OK-OPS

EMPTY -> STACK
POP_ : STACK -> STACK
PUSH : ELEMENT STACK -> STACK
TOp_ : STACK -> ELEMENT
EMPTY?_ : STACK -> BOOL

ERR-OPS
UNDERFLOW -> STACK
NO-TOP -> ELEMENT

VARS
ELM : ELEMENT
S : STACK

OK-EQNS
(POP PUSH(ELM,S)= S)
(TOP PUSH(ELM,S)= ELM)
(EMPTY? PUSH(ELM,S)= F)
(EMPTY? EMPTY = T)

ERR-EQNS
(POP EMPTY = UNDERFLOW)
(TOP EMPTY = NO-TOP)

JBO

=End of file=

6** WE BEGIN BY DEFINING THE BASIC COMPONENTS OF STATES
off

000 THE STORABLE VALUES OF MODEST ARE TYPE-VALUE PAIRS
WHICH ARE CALLED ITEMS 00

IM (PAIR z> ITEMi)
SORTS (PAIR => ITEM)

(LEFT => TYPE)
(RIGHT => VALUE)

OPS (<_;_> : LEFT RIGHT -> PAIR => <:-_>)
(LEFT_ : PAIR -> LEFT => TYPE-OF_)
(RIGHT_ : PAIR -> RIGHT z> VALUE-OF_)

MI

OBJ ITEM / ITEMi
OK-OPS

UNDEFINED-TYPE -> TYPE
UNDEFINED-VALUE -> VALUE
UNDEFINED-ITEM -> ITEM

17



JBO

*' A TAPE IS A LIST OF ITE4S H

IN (LIST > TAPE)/ ITEM BOOL
SORTS (LIST > TAPE)

(ELEMENT > ITEM)
OPS (NO-REST -> LIST => END-OF-TAPE)
MI

IM (PAIR => I/O-TAPES)/ TAPE
SORTS (PAIR => I/O-TAPES)

(LEFT => TAPE)
(RIGHT => TAPE)

OPS (LEFT_ PAIR -> LEFT => INPUT-OF-)
(RIGHT-. PAIR -> RIGHT => OUTPUT-OF_)

MI

Ie FROM THE INTEGERS,WE CONSTRUCT FIRST AN ENRICH14ENT
WITH MORE OPERATIONS,AND THEN AN
ABSTRACTION,WITH FEWER *'O

OBJ INTE / INT BOOL
OK-OPS

_- INT INT -> BOOL
_-> INT INT -> BOOL

VARS
I J INT

OK-EQNS
(I <= J = NOT(I > ))
(I :> J = NOT(I < ))

JBO

OBJ LOC / INT
SORTS LOC
OK-OPS

-: INT -> LOC
NEXT_ : LOC -> LOC

VARS
I : INT

OK-EQNS
(NEXT I I + 1)

JBO

IM (ARRAY z> STORE)/ LOC ITE4 BOOL
SORTS (ARRAY => STORE)
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(ELEMENT => ITEM)
(INDEX => LOC)

OPS (NIL-ARRAY -> ARRAY => NIL-STORE)

MI

IM (PAIR => STATE)/ STORE I/O-TAPES BOOL
SORTS (PAIR => STATE)

(LEFT => STORE)
(RIGHT => I/O-TAPES)

OPS (LEFT-: PAIR -> LEFT => MEMERY-OF-)
(RIGHT-. PAIR -> RIGHT => TAPE-OF_)

MI

OBJ MAKE-STATE / STATE
OK-OPS

PUT LOC ITEM STATE -> STATE
__]: STATE LOC -> ITEM
_IN_ LOC STATE -> BOOL
NIL-STATE -> STATE

VARS
ITEM ITEM
STORE STORE
L : LOC
TAPE : I/O-TAPES

OK-EQNS
(PUT(L,ITEM,< STORE ; TAPE >)= < PUT(L,ITEM,

STORE); TAPE >)
(< STORE ; TAPE > [L] = STORE (L )
(L IN < STORE ; TAPE > = L IN STORE)
(NIL-STATE = < NIL-STORE < NIL ; NIL > >)

JBO

OBJ I/O / MAKE-STATE
OK-OPS

READ-NEXT-INPUT : STATE -> ITEM
WRITE-NEXT-OUTPUT : ITEM STATE -> STATE
INITIAL-STATE : TAPE -> STATE
SET-INPUT : STATE -> STATE

VARS
STORE : STORE
IN-TAPE OUT-TAPE : TAPE
STATE STATE
ITEM ITEM

OK-ECXS
(READ-NEXT-INPUT(< STORE ; < IN-TAPE ; OUT-TAPE

> >)= FIRST(IN-TAPE))
(WRITE-NEXT-OUTPUT(ITEM,< STORE ; < IN-TAPE

OUT-TAPE > >)= < STORE ; < IN-TAPE ;(
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OUT-TAPE ; ITEM)> >)
(INITIAL-STATE(IN-TAPE)= < NIL-STORE ; < IN-TAPE

; NIL > >)
(SET-INPUT(< STORE ; < IN-TAPE ; OUT-TAPE > >)=

< STORE ; < REST(IN-TAPE); OUT-TAPE > >)
JBO

OBJ ALLOCATION / I/O
OK-OPS

ALLOCATE : STATE -> LOC
INITIALIZE : TYPE STATE -> STATE
INITIALIZE : ITEM STATE -> STATE
FIND-NEXT : LOC STATE -> LOC

VARS
TYPE : TYPE
STATE : STATE
ITEM : ITEM
LOC : LOC

OK-EQNS
(ALLOCATE(STATE)= FIND-NEXT(1 ,STATE))
(FIND-NEXT(LOC,STATE)= IF NOT(LOC IN STATE)THEN

LOC ELSE FIND-NEXT((NEXT LOC),STATE)FI)
(INITIALIZE(TYPE,STATE)= PUT(ALLOCATE(STATE),<

TYPE : UNDEFINED-VALUE >,STATE))
(INITIALIZE(ITEM,STATE)= PUT(ALLOCATE(STATE),

ITEM,STATE))
JBO

IM (ARRAY => LAYER)! ID LOC BOOL
SORTS (ARRAY => LAYER)

(INDEX => ID)
(ELEMENT => LOC)

OPS (NIL-ARRAY -> ARRAY => NIL-LAYER)
MI

IM (STACK => SYMBOL-TABLE)! LAYER BOOL
SORTS (STACK > ENV)

(ELEMENT => LAYER)
OPS (EMPTY -> STACK => NIL-ENV)

(POP_ STACK -> STACK => EXITBLOCIL)
MI

IM (LIST a> ID-LIST)/ ID BOOL
SORTS (LIST => ID-LIST)

(ELEMENT => ID)
MI

20



OBJ ENVIRONMENT /SYMBOL-TABLE ID-LIST ALLOCATION
OX-OPS

ENTERBLOC_ ENV -> ENV
GET :ENV ID -> LOC
RETRIEVE :ID ENV STATE ->ITEM
BIND :ID-LIST ENV STATE ->ENV

ERR-a PS
UNDECL :ID -> LOC
_ALREADY-DECLARED-IN-BLOCK :ID ->ENV

VARS
ENVY ENV
ID :ID
LAY :LAYER
STATE STATE
ID-L ID-LIST

OK-EQNS
(ENTERBLOCK ENV z PUSH(NIL-LAYER,ENV))
(GET(ENV,ID)=(TOP ENV)[ ID I IF ID IN TOP ENV)
(GET(ENV,ID)= GET(EXITBLOCK ENV,ID)IF(NOT(ID IN

TOP ENV)))
(RETRIEVE(ID,ENV,STATE)z STATE L GET(ENV,ID)])
(BIND(ID,PUSH(LAY,ENV),STATE): PLJSH(PUT(ID,

ALLOCATE(STATE) ,LAY) ,ENV))
(BIND(ID ; ID-L,ENV,STATE)= BIND(ID-L,BIND(ID,

ENV ,STATE) ,(INITIALIZE(UNDEFINED-ITEK,STATE

ERR-EQNS
(GET(NIL-ENV, ID): UNDECL(ID))
(BIND(ID,PUSH(LAY,ENV),STATE): ID

ALREADY-DECLARED-IN-BLOCK IF(ID IN LAY))
JBO

**WE NOW DEFINE INTEGER AND BOOLEAN EXPRESSIONS

OBJ EXPRESSION / ENVIRONMENT
SORTS EXP
OK-OPS

ID -> EXP
VALUE EXP ENV STATE ->ITEM
TYPE EXP ENV STATE ->TYPE

VARS
EXP :EXP
ENVY ENV
STATE :STATE
ID ID
I J ITEM

OK-EQ*IS
(VALUE(ID,ENV,STATE)z RETRIEVE(ID,ENV,STATE))
(TYPE(EXP,ENV,STATE): TYPE-OF VALUE(EXP,ENV,

STATE))
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JB
OBJ INT-EXP / EXPRESSION
OK-OPS

INT ->TYPE
- INT ->VALUE

INT-VAL ITEM - INT
*INT ->EXP
: EXP EXP->EXP

:EXP EXP - EXP
:EXP EXP ->EXP

ER R-OPS
-JDOES-NOT-MATCHL : TYPE TYPE ->VALUE

VARS
I : INT
ENV : ENV
STATE : STATE
EXP EXP' : EXP
TYPE :TYPE
VALUE :VALUE

OK-EQNS
(INT-VAL(< INT :I >)= I)
(VALUE(I,ENV,STATE)= < INT :I >)
(VALUECEXP + EXP',ENV,STATE)= < INT :(INT-VALC

VALUE(EXP,ENV,STATE)). INT-VAL(VALUE(EXP',
EN VSTATE ) ))

(VALUE(EXP - EXP',ENV,STATE)= < INT :(INT-VAL(
VALUE(EXP,ENV,STATE))- INT-VAL(VALUE(EXP',
EN VSTATE ) ))

(VALUE(EXP 0EXP',ENV,STATE)= < INT :(INT-VAL(
VALUE(EXP,ENV,STATE))* INT-VAL(VALUE(EXP',
EN VSTATE ) ) )

ERR-EQNS
(INT-VAL(< TYPE : VALUE >)= TYPE DOES-NOT-MATCH

INT IF(NOT(TYPE ==INT))
JBO

OBJT20 Running at 405005 Load 3.87 Used 0:04:4 4.9 in 1:25: 16

OBJ BOOL-EXP /INTE INT-EXP
OK-OPS

BOOL : >TYPE
- BOOL -> VALUE

BOOL-VAL :ITEM -> BOOL
- :BOOL -> EXP
-AND- EXP EXP -> EXP
_OR_ :EXP EXP -> EXP
NOT_- EXP -> EXP
_EQ_ EXP EXP -> EXP

_EXP EXP -> EXP
-> EXP EXP -> EXP 
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ERR-OPS

VASTYPE-CONFLICT ->ITEM

B :BOOL
TYPE :TYPE
ENV :ENV
STATE :STATE
VALUE :VALUE
EXP EXP' EXP
I J :INT

OK-EQNS
(BOOL-VAL(< BOOL B >)= B)
(VALUE(B,ENV,STATE)= < BOOL B >)
CVALUE(EXP AND EXP',ENV,STATE)= < BOOL :

BOOL-VALCVALUE(EXP ,ENV, STATE) )AND BOOL-VAL(
VALUE(EXP' ,ENV,STATE)))>)

(VALUE(EXP OR EXP',ENV,STATE)= < BOOL :(BOOL-VAL
CVALUE(EXP,ENV,STATE) )OR BOOL-VAL(VALUE(
EXP' ,ENV,STATE)))>)

(VALUE(NOT EXP,ENV,STATE)= < BOOL :(NOT(BOOL-VAL
(VALUECEX? ,ENV,STATE))))>)

(VALUE(EXP EQ EXP',ENV,STATE)= < BOOL :(VALUE(
EXP,ENV,STATE)== VALUE(EXP',ENV,STATE))>)

(VALUE(EXP <= EXP',ENV,STATE)= < BOOL :(INT-VAL(
VALUE(EXP,ENV,STATE))<= INT-VAL(VALUE(EXP',
EN V ,STATE ) ))> )

(VALUE(EXP > EXP',ENV,STATE)= < BOOL :(INT-VAL(
VALUE(EXP ENV,STATE))> INT-VAL(VALUE(EXP',
EN VSTATE ) ))

ERR-EQNS
CBOOL-VAL(< TYPE :VALUE >)= TYPE DOES-NOT-HATCH

BOOL IF NOT(TYPE ==BOOL))
(VALUE(EXP EQ EXP',ENV,STATE)= TYPE-CONFLICT IF

NOT(TYPE(EXP,ENV,STATE)== TYPE(EXP' ,ENV,
STATE))

(VALUE(EXEP <= EXP',ENV,STATE)= TYPE-CONFLICI IF
NOT(TYPE(EXP,ENV,STATE)== INT AND TYPE(EXP'
,ENV,STATE)== INT))

(VALUE(EXP > EXP',ENV,STATE)= TYPE-CONFLICT IF
NOT(TYPE(EXP,ENV,STATE)== INT AND TYPE(EXP'
,ENV,STATE)== INT))

JBO

*'WE NOW DEFINE VARIOUS STATEM4ENTS AND THEIR MEANINGS

IM (LIST =*> STMT-LIST)/ BOOL
SORTS (LIST => STMT-LIST)

(ELEMENT => STMT)
MI
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OBJ EXECUTION / STMT-LIST ENVIRONMENT I/O
SORTS PROGRAM
OK-OPS

EXECUTE_ : PROGRAM -> TAPE
EVAL STMT-LIST ENV STATE -> STATE
_WITH-INPUT_ : STMT-LIST TAPE -> PROGRAM

VARS
TAPE TAPE
STMT-L : STMT-LIST

OK-EQNS
(EXECUTE(STMT-L WITH-INPUT TAPE)= OUTPUT-OF(

TAPE-OF(EVAL(STMT-L,NIL-ENV, INITIAL-STATE(
TAPE)))))

JBO

lOS FIRST SEMICOLON #00

OBJ SEMICOLON / EXECUTION
VARS

STMT : STMT
STMT-L : STMT-LIST
ENV : ENV
STATE : STATE

OK-EQNS
(EVAL(STMT ; STMT-L,ENV,STATE)= EVAL(STMT-L,ENV,

EVAL (STMT, ENV, STATE ) ) )
JBO

*" DEFINE BLOCK STRUCTURE *"

IM (LIST => DECL-LIST)/ BOOL
SORTS (LIST => DECL-LIST)

(ELEMENT => DECLARATION)
OPS (NIL -> LIST => NILDECL)
MI

OBJ DECLARATION / DECL-LIST BOOL-EXP
OK-OPS

_:_ :ID TYPE -> DECLARATION
DECLARE-ENV : DECL-LIST ENV STATE -> ENV
DECLARE : DECL-LIST STATE ENV -> STATE

VARS
D DECLARATION

DL DECL-LIST
ENV ENV
ID ID
TYPE : TYPE
ID-L : ID-LIST
STATE : STATE

OK-EQNS
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(DECLARE(D ; DL,STATE, ENV)z DECLARE(DL,DECLARE(D
,STATE,ENV) ,DECLARE-ERV(D,ENV,STATE)))

(DECLARtE-ENV(D ; DL,ENV,STATE)= DECLARE-ENV(DL,
DECLARE-ENV(D,ENV,STATE) ,INITIALIZE(
UNDEFINED-ITEM ,STATE)))

(DECLARE(ID :TYPE ,STATE,ENV)= INITIALIZECTYPE,
STATE))

(DECLARE-ENV(ID :T!PE,ENV,STATE): BIND(ID,ENV,
STATE))

JBO

OBJ BLOCK / DECLARATION EXECUTION
SORTS BLOCK
OK-OPS

-;- DECL-LIST STMT-LIST -> BLOCK
BEGIN-END :BLOCK -> STMT

VARS
DCL-L DECL-LIST
STMT-L STMT-LIST
ENV :ENV
STATE :STATE

OK-EQNS
(EVAL(BEGIN DCL-L ; STMT-L END,ENV,STATE): EVAL(

STMT-L ,DECLARE-ENY (DCL-L, ENTEBBLOCK ENV,
STATE) ,DECLARECDCL-L ,STATE, ENTERBLOCK ENV))

JBO

*"DEFINE ASSIGNMENT *

OBJ ASSIGNMENT / EXECUTION BOOL-EXP
OK-OPS

:=_- ID EXP -> STMT
ASSIGN :ID ITEM ENV STATE -> STATE

ERR-OPS
TYPE-OFCONFLICTS_ :ID ITEM -> STATE

VARS
ID ID
EXP EXP
ENV ENV
STATE STATE
ITEM ITEM

OK-EQNS
(EVAL(ID :=EXP,ENV,STATE)z ASSIGN(ID,VALUE(EXP,

ENV,STATE) ,ENV,STATE))
(ASSIGN(ID,ITEM,ENV,STATE)a PUT(GET(ENV,ID),ITEM

,STATE))
ERR-EQNS

CASSIGN(ID, ITEM,ENV,STATE)m TYPE-OF ID CONFLICTS
ITEM IF NOT(TYPE-OF RETNIEVE(ID,ENV,STATE)
=TYPE-OF ITEM))
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JBO

~'DEFINE READ AND PRINT STATEMENTS *

OBJ INPUT-OUTPUT / EXECUTION ASSIGNMENT
OK-OPS

READ_ ID -> STMT
PRINT_- EXP -> STMT

ERR-OPS
NO-INPUT-AVAILABLE-FOR_ ID ->STATE

VARS
ID ID
ENV ENV
STATE :STATE
EXP :EXP
STORE :STORE
OUT-TAPE :TAPE

OK-EQNS
(EVAL(READ ID,ENV,STATE): ASSIGN(ID,

READ-NEXT-INPUT (STATE) ,ENY ,SET-INPUT (STATE)

(EVAL(PRINT EXP ,ENI,STATE): WRITE-NEXT-OUTPUT(
VALUE(EXP ,ENV,STATE) ,STATE))

ERR-EQ*4S
CEVAL(READ ID,ENV,< STORE ;< NIL ; OUT-TAPE > >

)= NO-INPUT-AVAILABLE-FOR ID)
JBO

@DEFINE CONDITIONAL 000

OBJ CONDITIONAL / EXECUTION BOOL-EXP STilT-LIST
OK-OPS

IF :THEN__ELSE_: FI z EXP STilT-LIST SThT-LIST -
STMT

VARS
EXP :EXP
STMT-L STMT-L' STilT-LIST
ENV ENV
STATE :STATE

OK-EQNS
(EVAL(IF: EXP THEN STMT-L ELSE STI4T-Ll :FI,ENV,

STATE)= EVALCSTMT-L,ENV,STATE)IF BOOL-VAL(
VALUE(EXP,ENV,STATE))=: T)

(EVAL(STMT-L ,ENV,STATE)IF BOOL-VAL(VALUE(EXP,
ENV,STATE))== F)

JBO

~DEFINE ITERATION Off

OBJ ITERATION / EXECUTION BOOL-EXP STilT-LIST
OK-OPS 
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WHILE_,DOOD : EXP STMT-LIST -> STHT
VARS

EXP : EXP
STMT-L : STMT-LIST
ENV : ENV
STATE : STATE

OK-EQNS
(EVAL(WHILE EXP DO STMT-L OD,ENV,STATE)= EVAL(

STMT-L ; WHILE EXP DO STMT-L OD,ENV,STATE)
IF BOOL-VAL(VALUE(EXP,ENV,STATE))== T)

(= STATE IF(BOOL-VAL(VALUE(EXP,ENV,STTE))=z F))
JBOI THIS OBJECT SUMMARIZES ALL STATE4ENT DEFINITIONS *'r

OBJ STATE14ENTS / EXECUTION SEMICOLON BLOCK
ASSIGNMENT CONDITIONAL INPUT-OUTPUT
ITERATION

JBO

WE NOW BEGIN DEFINING PROCEDURES 440

IM (PAIR => PROC-DEFN)/ STMT-LIST ID-LIST BOOL
SORTS (PAIR = PROC-DEFN)

(LEFT => ID-LIST)
(RIGHT > STMT-LIST)

OPS (LEFT_ : PAIR -> LEFT => FORMALS-OF_)
(RIGHT_ PAIR -> RIGHT => STHT-OF_)

mi

IM (PAIR => CONTOUR)/ PROC-DEFN ENVIRONMENT BOOL
SORTS (PAIR => CONTOUR)

(LEFT => PROC-DEFN)
(RIGHT => ENV)

OPS (LEFT_ PAIR -> LEFT => DEFN-OF_)
(RIGHT_ PAIR -> RIGHT => ENV-OF_)

MI

IM (LIST > PARAM-DECL-LIST)/ BOOL
SORTS (LIST => PARAM-DECL-LIST)

(ELEMENT => PARAM-DECL)
MI

IM (LIST = TYPE-LIST)/ ITEM BOOL
SORTS (LIST => TYPE-LIST)

(ELEMENT > TYPE)
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OPS (NIL -> LIST => VOID)
MI

IN (LIST => EXP-LIST)/ BOOL-EXP BOOL
SORTS (LIST => EXP-LIST)

(ELEMENT -> EXP)
MI

OBJ PROCEDURES / CONTOUR TYPE-LIST EXP-LIST
PARAM-DECL-LIST DECLARATION

SORTS PROC-DECL
OK-OPS

PROCLI : TYPE-LIST -> TYPE
CONTOUR -> VALUE

: PROC-DECL -> DECLARATION

CONTOUR-VAL ITEM -> CONTOUR
PROC__[_]__END ID PARAM-DECL-LIST STMT-LIST ->

PROC-DECL
ID TYPE -> PARAM-DECL

CALL_--) : ID EXP-LIST -> STMT
VARS

TYPE-L : TYPE-LIST
C : CONTOUR
TYPE TYPE
VALUE VALUE

OK-EQNS
(CONTOUR-VAL(< PROCE TYPE-L ] : C >)= C)

ERR-EQNS
(CONTOUR-VAL(< TYPE : VALUE >)= TYPE

DOES-NOT-MATCH PROC[ VOID I IF((TYPE == INT
)OR(TYPE == BOOL)))

JBO

OBJ PROC-DECLARATION / PROCEDURES
OK-OPS

GET-ID : PARAM-DECL-LIST -> ID-LIST
GET-TYPE : PARAM-DECL-LIST -> TYPE-LIST

VARS
ID : ID
PM-L : PARAM-DECL-LIST
STMT-L : STMT-LIST
ENV : ENV
STATE : STATE
PM : PARAM-DECL
TYPE : TYPE

OK-EQ4S
(DECLARE-ENV(PROC ID C PM-L I STMT-L END,ENV,

STATE)= BIND(ID,ENV,STATE))
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(DECLARE(PROC ID C PM-L I STNT-L END,STATE,ENY)z
INITIALIZE((<(PROct GET-TYPE(PM-L)J: ((<

GET-ID(PM-L); STI4T-L >); DECLARE-ENV(PROC
ID C PM-L I STMT-L END,ENV,STATE)>)>),STATE

CGET-TYPE(P4 PM-L)= GET-TYPE(PM); OET-TYPE(
PM-L))

(GET-TYPE(ID TYPE)= TYPE)
(GET-ID(PM PH-L): GET-ID(PK); GET-ID(Pt4-L))
(GET-ID(ID TYPE)= ID)

JBO

OBJ PARAI4-PASS-BY-VALUE / PROC-DECLARATION
OK-OPS,

PASS-ENVY ID ENV STATE -> ENV
PASS :EXP-LIST STATE ENV -> STATE
GET-ENV :ID ENV STATE -> ENV
GET-PARAMS :ID ENV STATE -> ID-LIST

VARS
EXP -.EXP
EXP-L :EXP-LIST
ID :ID
STMT-L :S7?4T-LIST
STATE :STATE
ENV ENV

OK-EQ*NS
(PASS(EXP ; EXP-L,STATE,ENV): PASS(EXP-L,PASS(

EXP,STATE,ENV) ,ENV))
(PASS(EXP,STATE,EMV)z INZTIALZB(VALUR(EXP,BNV,

STATE) ISTATE))
(PASS-ENV(ID,ENV,STATE)= BIND(GET-PARAMS(ID,ENV,

STATE) ,GET-ENV (ID, ENV, STATE), STATE))
(GET-PARAMS(ID,ENV, STATE): FORMALS-OF(DEFN-OF

CONTOUR-VALVALUE(ID,ENV,STATE))))
(GET-ENV(ID, ENY, STATE): ENTEBBLOCK ENV-OF

CONTOUR-VAL(VALUE(ID,ENV,STATE)))
JBO

OBJ CALL-BY-VALUE / PARAl4-PASS.-BY-VALUE EXECUTION
OK-OPS

CALL-OK? :ID EXP-LIST ENV STATE -> BOOL
LIST-TYPE :EXP-LIST ENV STATE -> TYPE-LIST
GET-STMT :ID ENV STATE -> STMT-LIST

ERR-OPS
PAYIAMS-OFJ141SMATCHL ID EXP-LIST -> BOOL

VARS
ID :ID
EXP-L :EXP-LIST
EXP Exp
ENV ENV
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STATE :STATE
OK-EQNS

(EVAL(CALL ID EEXP-L ],ENV,STATE)= EVAL(
GET-STMT(ID,ENV,STATE) ,PASS-ENV(ID,ENV,
STATE) ,PASS(EXP-L ,STATE,ENV) )IF CALL-OK?(ID
,EXP-L,ENV,STATE))

(CALL-OK?(ID,EXP-L,ENV,STATE)c T IF(TYPE(ID,ENV,
STATE)== PROCE LIST-TYPE(EXP-L,ENV,STATE)])

CGET-STMT(ID, ENY, STATE): STMT-OF DEFN-OF
CONTOUR-VAL( VALUE (ID ,ENY, STATE) ))

(LIST-TYPE(EXP,ENV,STATE)c TYPE(EXP,ENV,STATE))
(LIST-TYPE(EXP ; EXP-L,ENV,STATE)= TYPE(EXP,ENV,

STATE); LIST-TYPE(EXP-L,ENV,STATE))
ERR-EQSS

CCALL-OK?(ID,EXP-L,ENV,STATE)= PARAMS-OF ID
MISMATCH EXP-L IF(NOT(TYPE(ID,ENV,STATE)==
PROC[ LIST-TYPE(EXP-L,ENV,STATE)]))

JBO

**WE NOW SUM UP ALL THE FEATURES OF MODEST *

OBJ MODEST / STATEMENTS CALL-BY-VALUE
JBO

=End of file=

EXIT

@;WE NOW SAVE THE RESULTS OF OBJT201S PROCESSING OF THIS
@;DEFINITION IN A FILE TO WHICH WE CAN RETURN LATER FOR
@;EXECUTION. IN EFFECT, WE HAVE COMPILED AN INTERPRETER
@;FOR THE LANGUAGE MODEST.

@SAVE MOD.EXE
MOD.EXE.3 Saved

@VDI MOD.EXE

PS: (OBJT>
MOD.EXE.3;P775200 268 137216(36) 6-Jul-81 18:02:16 GOGUEN

@;THUS FILE MOD.EXE IS IN DIRECTORY <OBJT> , 268 PAGES LONG

#R MOD
[CHKPOINT:(7 6 81)AT(18 2 10)]

I N M O T E S T I 
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*'TEST PROGRAMS FOR THE MODEST DEFINITION *
**FIRST TESTS FOR CONDITIONAL

RUN EXECUTE((BEGIN 'A :INT ; READ 'A ;(IF: 'A <= 4I THEN
PRINT('A + 1)ELSE PRINT('A 0 2):FI)END)
WITH-INPUT(< INT : 2 >)) NUR

AS TAPE: (< INT : 3 >)

RUN EXECUTE((BEGIN 'A :INT ; READ 'A ;(IF: 'A <= 4I THEN
PRINT('A + 1)ELSE PRINT('A 0 2):FI)END)
WITH-INPUT(< INT :5 ))NUR

AS TAPE: (< INT : 10 >)

**A TEST FOR WHILE *

RUN EXECUTE((BEGIN 'A :INT I S :INT ;READ 'A I S
0 ; WHILE('A > 0)DO('S :=('A '5I); 'A:(
'A - 1); PRINT 'S)OD END)WITH-INPUT(< INT
2 M) NUR

AS TAPE: ((< INT :2 >);(< INT : 3 M)

*'A TEST FOR BLOCKS *

RUN EXECUTE((BEGIN 'A :INT ; 'B : INT ;(READ 'A ; 'B :a(
'A + 11); PRINT 'B);(BEGIN 'A : INT ; READ
'A ; 'B :=('A + 5); PRINT 'B END); 'B :=('A
+ 22); PRINT 'B END)WITH-INPUT(< INT :11
> ; < INT :5 >)) NUR

AS TAPE: ((< INT : 22 >);(< INT :10 >);(< INT : 33>)

**# TESTS FOR RECURSION,FIRST FACTORIAL O*

RUN EXECUTE((BEGIN IS : INT ;N : INT ; PROC 'P E 'A
INT W'S :=(IS * A)END ; IS := 1 ;READ
'M WHILE('M > 1)DO(CALL 'P C 'N J N'
('M 1))OD ; PRINT IS END)WITH-INPUT(< INT

:2 M) NUR
AS TAPE: (< IN? : 2 >)

RUN EXECUTE((BEGIN('A : INT ;(PROC 'P C 'B :INT ](IF:('B
<= 3)THEN(CALL 'P CII B + 1 ])ELSE(PRINT('B
+ 11)):FI)END));(READ 'A ; CALL 'P C 'A 3)

END)WITH-INPUT < INT 1 >) NUR
AS TAPE: (< INT : 15 >)
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**TESTS FOR PROCEDURES AS PARAMETERS Of#

RUN EXECUTE((BEGIN('A : INT ; IQ :PROCE INT I ;(PROC IS
E 'C : IT ](PRINT 'C)END);(PROC 'P C 'B
PROCC INT I ; 'D : lT ](CALL 'B ID 'D END
));READ 'A ; IQ I: S ;(CALL 'P [ IQ ;'A
)))END)WITH-INPUT(< INT 22 >)) NUR

AS TAPE: (< INT :22 >)

RUN EXECUTE((BEGIN('A :INT ; 'Q :PROC(CPROCC INT I
INT ; lT)l ;(PROC 'P W(' : PROCd INT I
'B INT ; 'C INTfl(CALL 'R (('B + 'C)
END);(PROC IS I'A : IT ](PRINT('A +11))

END);(' :z'P ; READ 'A ;(CALL IQ CI'S
'A ; 'A ]))END)WITH-INPUT(< IN? : 11>)
NUR

AS TAPE: (< INT : 33 >)

=End of file=

EXIT

(PHOTO: Recording terminated Mon 6-Jul-81 6:18PM)
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C SIMBOLTREE SPECIFICATION

[PHOTO: Recording initiated Tue 9-Deo-80 11:32PH]

Link from OBJT, TTY 31

TOPS-20 Command processor 3A(30)-3
@OBJT

'**OBJT 12/2/79

IN NAT POBJS INDEX TREE STREE NI

*** NAT.OBJ : DEFINES NATURAL NUMBER FROM INTEGER USING
CONSTRUCTOR OPERATION ( # N ) AND ERROR CONDITION ( N < 0
) off

OBJ NAT / INT
SORTS NAT
OK-OPS

#_ : INT-> NAT
INC : NAT-> NAT
DEC NAT-> NAT
POS : NAT-> BOOL

ERR-OPS
NEG : -> NAT

VARS
N : INT

EQNS
(DEC(# N)= # DEC(N))

OK-EQNS
(INC(# N)- # INC(N))
(POS(# N)= N > 0)

ERR-EQNS
(U N = NEG IF N < 0)

JBO

0*' TEST CASES FOR NAT 000
RUN INC(INC(# 14)) NUR

AS NAT: (# 6)

RUN DEC(DEC(# 1)) NUR
AS NAT: >>ERROR>> MEG

RUN INC(DEC(DEC(# 1))) NUR
AS NAT: >>ERROR>> INC(NEG)

RUN DEC(DEC(DEC(# 1))) NUR

33



AS NAT: >>ERROR>> DECCNEG)

RUN DEC(INC(DEC(# 1))) NUR
AS NAT: (# 0)

=End of file=

*** POBJS.OBJ : DEFINES PARAMETERIZED OBJECTS ARRAY AND
PAIR 000

OBJ ARRAY / BOOL
SORTS ARRAY INDEX ELEM / BOOL
OK-OPS

NILARRAY : >ARRAY

PUT :INDEX ELEM ARRAY -> ARRAY
i-[-: ARRAY INDEX -> ELEM.
-IN_ :INDEX ARRAY -> BOOL

ERR-OPS
UNDEF :INDEX -> ELEM

VARS
A : ARRAY
I V' : INDEX
V V' : ELEJ4

OK-EQNS
(PUT(I,V,A)( IV V IF I V=I)
(= A [ IV I IF NOT I V:I)
(I IN NILARRAY =F)
(I IN PUT(I',V,A): I V:I OR I IN A)

ERR-EQNS
(A C I UNDEF(I)IF NOT I IN A)

JBO

OBJ PAIR
SORTS PAIR C1 C2
OK-OPS

(._>: C1 02 -> PAIR
#1- : PAIR -> C1
#2_ : PAIR -> C2

VARS
Cl : Cl
C2 0 2
P : PAIR

OK-EQJS
(#1 < C1 C 2 > = Cl)
(#2 < C1 C2 > = C2)
(< #1 P ;#2 P > =P)

JBO

=End of file=
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*INDEX.OBJ :DEFINES INDEX :POINTER TO A NODE IN A
TREE O*

OBJ INDEX / NAT
SORTS INDEX
OK-OPS

INDEX ->INDEX
POP_ :INDEX -> INDEX
-- : INDEX NAT -> INDEX
NEXT- : INDEX ->INDEX

PREY_ INDEX ->INDEX
ERR-OPS

UNDEF :> INDEX
NO-PREy - INDEX

VARS
P :INDEX
N :NAT

OK-EQNS
(POP(P N)= P)
(NEXT(P N): P INCN)
(PREV(P N)= P DECN)

ERR-EQNS
(POP INDEX = UNDEF)
(P .N = NO-PREY IF ERRN)

JBO

~'TEST CASES FOR INDEX ~
OBJ INDEXTEST / INDEX
OK-OPS

P1 - INDEX
EQNS

(P1 INDEX . 1 * 2 . # 3)
JBO

RUN P1 NUB
AS INDEX: ((INDEX M( 1)).(# 2)).(# 3))

RUN POP P1 NUR
AS INDEX: ((NDEX .(# 1)).(# 2))

RUN POP POP P1 NUR
AS INDEX: (INDEX .0E 1)

RUN POP POP POP P1 NUR
AS INDEX: INDEX

RUN POP POP POP POP P1 NUB
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AS INDEX: >>ERROR>> UNDEF

RUN NEXT P1 NUR
AS INDEX: ((INDEX .D1)).(# 2)).(# 4))

RUN PREY P1 NUR
AS INDEX: ((INDEX .E1)).(# 2)).(# 2))

=End of file=

0* TREE.OBJ : DEFINES LABELED TREE AS INDEXED ARRAY
WITH LABEL AS A PARAMETER ***

IM (ARRAY => LTREE1)/ INDEX
SORTS (ARRAY => LTREE)

(ELEM => LABEL)
OPS (NILARRAY ->ARRAY 0> NILTREE)
MI

OBJ LTREE /LTREE1

ARTY:INE LRE > N
BREATH INDEX LTREE -> INT
FRSATH INDEX LTREE -> INE
LARST INDEX LTREE -> INDEX
PUSHT INDEX LTREE -> INDEX

PUSH INDEX LABEL LTREE -> LTREE
ERR-OPS

BAD-INDEX :-> INT
BAD-INDEX :INDEX -> INDEX
BAD-INDEX :INDEX -> LTREE

VARS
T LTREE
P :INDEX
N NAT
L :LABEL
I INT

OK-EQNS
(BREADTH(P # 1,T)= 0 IF NOT(P # 1)IN T)
(BREADTH(P N,T)= BREADTH(P INC(N),T)IF(P

INC(N))IN T)
(BREADTH(P . I,T)= I IF(P # I)IN T AND NOT(P

. INC(I)IN T)
(FIRST(P,T)= P .I 1 IF(P . 1)IN T)
(ARITY(P,T)= BREADTH(P . 1,T))
(LAST(P,T)= P . # ARITY(P,T))
(PUSH(P,T): P . INC(ARITY(P,T)))
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(PUSH(P,L,T)= PUT(PUSH(P,T),L,T)IF P IN T)
ERR -EQNS

(BREADTH(P # 0,T)= BAD-INDEX)
(BREADTH(P N,T)z BAD-INDEX IF NOT P IN T OR

ERR(N))
(FIRST(P,T): BAD-INDEX(P)IF NOTCP . 1)IN T)
(LAST(P,T)= BAD-INDEX(P)IF NOT( . ARITY(P,T))

IN T)
(PUSH(P,L,T)= BAD-INDEX(P)IF NOT P IN T)

JBO

fi* INSTANTIATE LABEL TO INTEGER IN LTREE AND TEST *

IM (LTREE => INTREE)/ INDEX
SORTS (LABEL => INT)
MI

OBJ LTREETEST /INTREE
OK-OPS

P_ :INT ->INDEX
T_ :INT ->LTREE

EQNS
(P 0 =INDEX)
(T 0 =PUT(P 0,O,NILTREE))
(P 1 P 0 . 1)
(T 1 PUT(P 1,1,T 0))
(P 2 NEXT P 1)
(T 2 PUT(P 2,2,T 1))
(P 3 zP 2 . 1)
(T 3 PUT(P 3,3,T 2))
(P 4 =NEXT P 3)
CT 4 =PUTCP 4,4I,T 3))
(P 5 =NEXT P 4)
(T 5 =PUT(P 5,5,T 4))
(T 6 = PUSH(P 0,6,T 5))
(P 6 =PUSH(P 0,T 5))
CT 7 = PUSH(P 2,7,T 5))
(P 7 = PUSH(P 2,T 5))
(T 8 = PUSH(P 3,8,T 5))
(P 8 =PUSH(P 3,T 5))
(T 9 = PUSH(P 5,9,T 5))
(P 9 = PUSH(P 5,T 5))

JBO

RUN ARITY(P 0,T 5) HUR
AS INT: 2

RUN ARITY(P 2,T 5) NUR
AS INT: 3
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(PUSH(P,L,T)= PUT(PUSH(P,T),L,T)IF P IN T)
ERR-EQNS

(BREADTH(P # 0,T)= BAD-INDEX)
(BREADTH(P N,T)= BAD-INDEX IF NOT P IN T OR

ERRN)
(FIRST(P,T)z BAD-INDEX(P)IF NOT(P . 1)IN T)
(LAST(P,T)= BAD-INDEX(P)IF NOT(P * ARITY(P,T))

IN T)
(PUSH(P,L,T)a BAD-INDEX(P)IF NOT P IN T)

JBO

*"INSTANTIATE LABEL TO INTEGER IN LTREE AND TEST @

IM CLTREE => INTREE) INDEX
SORTS (LABEL => INT)
141

OBJ LTREETEST /INTREE
OK-OPS

P _ : INT ->INDEX

T_ :INT >L.TREE

EQNS
(P 0 = INDEX)
(T 0 = PUT(P O,0,NILTREE))
(P 1 =p 0 . 1)
CT 1 PUT(P 1,1,T 0))
(P 2 =NEXT P 1)
(T 2 =PUT(P 2,2,T 1)
(P 3 =P 2 . 1)
(T 3 PUT(P 3,3,T 2))
(P 4 =NEXT P 3)
(T 4 =PUT(P 4,4,T 3))
(P 5 =NEXT P 4)
(T 5 PUT(P 5,5,T 4))
(T 6 =PUSH(P 0,6,T 5))
(P 6 =PUSH(P 0,T 5))
(T 7 =PUsH(P 2,7,T 5))
(P 7 =PUSH(P 2,T 5))
CT 8 = PUSH(P 3,8,T 5))
(P 8 = PUSHCP 3,T 5))
(T 9 = PUSH(P 5,9,T 5))
(P 9 = PUSH(P 5,T 5))

JBO

RUN ARITY(P 0,T 5) NUR
AS INT: 2

RUN ARITY(P 2,T 5) NUR
AS INT: 3
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RUN ARITY(P 3,T 5) NUR
AS INT: 0

RUN ARITY(P 4,T 5) NUR
AS INT: 0

RUN ARITY(P 5,T 5) NUR
AS INT: 0

RUN T 5 1 P 0 ] NUR
AS INT: 0

RUN T 5 1 P 1 ] NUR
AS INT: 1

RUN T 5 1 P 2 ] NUR
AS INT: 2

RUN T 5 [ P 3 ] NUR
AS INT: 3

RUN T 5 [ P 4 ] NUR
AS INT: 4

RUN T 5 1 P 5 J NUR
AS INT: 5

RUN T 9 P P 0 ] NUR
AS INT: 0

RUN T 9 [ P 1 ] NUR
AS INT: 1

RUN T 9 1 P 2 ] NUR
AS INT: 2

RUN T 9 [ P 3 1 NUR
AS INT: 3
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RUN T 9 EP 4 ] NUB
AS INT: 4

RUN T 9 [P 5 ] NUR
AS INT: 5

RUN T 9 [ P 6 ] NUR
AS INT: >>ERROR>> UNDEF(INDEX .I3)))

RUN T 9 C P 7 1 NUR
AS INT: >>ERROR>> UNDEF((INDEX (#2)).(# 4i)))

RUN T 9 C P 8 3 NUB
AS INT: >>ERROR>> UNDEF(((INDEX (#2)).(# 1)).(# 1)

RUN T 9 [ P 9 3 NUR
AS INT: 9

=End of file=

000 STREE.OBJ : DEFINES SYI4BOLTREE ,PARAM4ETERIZED BY

LABEL #00

IM (PAIR => STREEW) LTREE
SORTS (PAIR => STREE)

(Cl => INDEX)
(C2 => LTREE)

KI

OBJ STREE / STREE1
OK-OPS

NILSTREE : >STREE
PUSH : STREE LABEL -> STREE
LABEL :STREE LABEL -> STREE
VAL~_ STREE -> LABEL
POP_ : STREE -> STREE
NEXT_ : STREE -> STREE
PREV_ : STREE -> STREE

VARS
ST :STREE
L LABEL

OK-EQNS
(NILSTREE z< INDEX ;NILTREE >)

(PUSH(ST,L)a < #1 ST # INC(ARITY(#l ST,#2 ST))
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PUSH(#1 ST,L,#2 ST)>
(LABEL(ST,L)= < #1 ST ; PUT(#l ST,L,#2 ST)>
(VAL ST z#2 ST [ #1 ST 3)
(POP ST = < POP #1 ST ; #2 ST >)
(NEXT ST =< NEXT #1 ST ;#2 ST >)
(PREY ST z< PREY #1 ST ;#2 ST >)

JBO

*"INSTANTIATE LABEL TO INT AND TEST Off

IM (STREE => INTSTREE)/ STREE1
SORTS (LABEL => INT)
KI

OBJ STREETEST /INTSTREE
OK-OPS

T-_ INT ->STREE

EQNS
(T 0 = LABEL(NILSTREE,O))
(T 1 = PUSH(T 0,1))
(T 2 =PUSH(POP T 1,2))
(T 3 z PUSH(POP T 2,3))
(T 4 =PUSH(POP T 3,4))
(T 5 z PUSH(T 4,5))
(T 6 z PUSH(POP T 5,6))
(T 7 z POP T 6)

JBO

RUN VAL T 0 NUR
AS INT: 0

RUN VAL T 1 NUR
AS INT: 1

RUN VAL T 2 NUR
AS INT: 2

RUN VAL T 3 NUR
AS INT: 3

RUN VAL T 4 NUN
AS INT: 4

RUN VAL T 5 NUR
AS INT: 5
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RUN VAL T 6 NUR
AS INT: 6

RUN VAL T 7 NUR
AS INT: 4

RUN VAL PREV T 7 NUR
AS INT: 3

RUN VAL PREV T 6 NUR
AS INT: 5

RUN VAL PREV T 4 NUR

AS INT: 3

=End of file=

>
EXIT

@POP

[PHOTO: Recording terminated Tue 9-Dec-80 11:45PM]
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D SPECIFICATION OF GRAPHS AND PATHS

[PHOTO: Recording initiated Mon 6-Jul-81 5:04PM]

Link from GOGUEN, TTY 10

TOPS-20 Command processor 3A(37)-3

@OBJT2O

***OBJT 4/17/81

IN GRAPH NI
OBJT20 Running at 404602 Load 2.23 Used 0:02:25.8 in 0:34:03

'U' DEFINITIONS OF GRAPH AND PATH,TO BE LATER SPECIALIZED
TO PARTICULAR GRAPHS **'

OBJ GRAPH
SORTS NODE ARC
OK-OPS

BEGIN_ : ARC -> NODE
END.- : ARC -> NODE

JBO

OBJ PATH / GRAPH BOOL
SORTS PATH
OX-OPS

SOURCEL : PATH -> NODE
TARGET__ : PATH -> NODE
NIL : NODE -> PATH
APPEND : PATH ARC -> PATH

ERR-OPS
ERRORPATH : NODE NODE -> PATH

VARS
N N' : NODE
P : PATH
A : ARC

OK-EQNS
(SOURCE NIL(N)- N)
(TARGET NIL(N): N)
(SOURCE APPEND(P,A): SOURCE P)
(TARGET APPEND(P,A)z END A)

ERR-EQIS
(APPEND(P,A)u ERRORPATH(SOURCE P,END A)IF NOT
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TARGET P BEGIN A)
JBO

OBJ GRAPH1 / PATH
OK-OPS

Ml -> NODE
2 :-> NODE
N3 :- NODE
N4 -> NODE
Al - ARC
A2 :-> ARC
A3 : -> ARC

OK-EQNS
(BEGIN Al Ni)
(BEGIN A2 = N2)
(BEGIN A3 N)
(END Al = N2)
(END A2 = N3)
(END A3 z N3)

JBO

*H NOW SOME TEST CASES *"

RUN APPEND(NIL(Nl),Al) NUR
AS PATH: APPEND(NIL(Nl),Al)

RUN APPEND(APPEND(NIL(N1),AI),A2) NUR
AS PATH: APPEND(APPEND(NIL(NI),AI),A2)

RUN APPEND(APPEND(APPEND(NIL(N1),At),A2),A3) NUR
AS PATH: >>ERROR>> ERRORPATH(Nl,N3)

RUN APPEND(NIL(Nl),A2) NUR
AS PATH: >>ERRORM> ERRORPATH(Nl,N3)

RUN APPEND(APPEND(NIL(NI),AI),A3) NUR
AS PATH: >>ERROR ERRORPATH(NI,N3)

'** WE NOW DEFINE ANOTHER GRAPH If

OBJ GRAPH2 / PATH
OK-OPS
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NI : -> NODE
N2 :-> NODE
N3 :-> NODE
N :-> NODE
Al -> ARC
A2 :-> ARC
A3 : -> ARC
A41 -> ARC

OK-EQNS
(BEGIN Al = N2)
(BEGIN A2 = N2)
(BEGIN A3 = N3)
(BEGIN A3 = Ni)
(END Al = NI)
(END A2 = N3)
(END A3 = N4)
(END A3 = N)
(END A4 = Ni)

JBO

*" NOW SOME TEST CASES FOR THE SECOND GRAPH *O

RUN APPEND(NIL(Nl),A1) NUR
AS PATH: >>ERROR>> ERRORPATH(Nl,N1)

RUN APPEND(NIL(N2),AI) NUR
AS PATH: APPEND(NIL(N2),A1)

RUN APPEND(APPEND(NIL(N1),A1),A2) NUR
AS PATH: >>ERROR>> ERRORPATH( (SOURCE ERRORPATH(N ,NI ) ),N3)

RUN APPEND(APPEND(NIL(N2) ,A1) ,A4) NUR
AS PATH: >>ERROR>> ERRORPATH(N2,N1)

RUN APPEND(APPEND(APPEND(NIL(N2),AI),A4),A3) NUR
AS PATH: >>ERROR>> ERRORPATH((SOURCE ERRORPATH(N2,NI)),N4)

RUN APPEND(NIL(NI),A2) NUR
AS PATH: >>ERROR>> ERRORPATH(Nl,N3)
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RUN APPEND(APPEND(NIL(N1),A4),A3) NUR
AS PATH: >>ERROR>> ERRORPATH((SOURCE ERRORPATH(N1,N )),N4)

%End of file=

EXIT

@POP

(PHOTO: Recording terminated Mon 6-Jul-81 5:05PN
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E TECHNIQUES FOR HIGHER ORDER SPECIFICATIONS AND OTHER SURPRISES

HERE ARE SOME INTERESTING THINGS YOU MIGHT NOT HAVE REALIZED
COULD BE DONE WITH OBJT: DEFINE THE NATURALS FROM THE INTEGERS;
GET THE EFFECT OF HIGHER ORDER PARAMETERIZED TYPES; AND DEFINE
PARAMETERIZED TYPES WHICH DO NOT PRESERVE THEIR ARGUMENT OBJECTS,
BUT RATHER DIVIDE THE4 BY 5.

[PHOTO: Recording initiated Tue 9-Dec-80 11:32PM]

Link from OBJT, TTY 31

TOPS-20 Command processor 3A(30)-3

@OBJT

0**OBJT 12/2/79

IN NAT POBJS INDEX TREE STREE NI

0*0 NAT.OBJ : DEFINES NATURAL NUMBER FROM INTEGER USING
CONSTRUCTOR OPERATION ( # N ) AND ERROR CONDITION ( N < 0
) li..E

OBJ NAT / INT
SORTS NAT
OK-OPS

#_ : INT-> NAT
INC : NAT-> NAT
DEC : NAT-> NAT
POS : NAT-> BOOL

ERR-OPS
NEG : -> NAT

VARS
N : INT

EQNS
(DEC(# N)= # DEC(N))

OK-EQNS
(INC(# N): # INC(N))
(POS(# N): N > 0)

ERR-EQNS
(U N : NEG IF N < 0)

JBO

600 TEST CASES FOR NAT *te
RUN INC(INC(# 4)) NUR

AS NAT: ( 6)

RUN DEC(DEC(# 1)) NUR
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AS NAT: >>ERROR>> NEG

RUN INC(DEC(DEC(# 1)) NUR
AS NAT: >>ERROR>> INC(NEG)

RUN DEC(DEC(DEC(# 1)) NUB
AS NAT: >>ERROR>> DEC(NEG)

RUN DEC(INC(DEC(# 1)) NUR
AS NAT: (# 0)

=End of file=

(PHOTO: Recording initiated Mon 13-Apr-81 6:57PMJ

Link from OBJT, TTY 1

TOPS-20 Command processor 3A(32)-3
End of COMAND.CMD.1

QOBJT

G*#OBJT 12/2/79

>IN MAPLST .OBJ NI

*'MAPLIST AS PARAMETERIZED OBJECT '

OBJ MAPLIST
SORTS E L
OK-OPS

- :E ->L
NIL : -> L

--:L L -> L (ASSOCIATIVE)
FE :E -> E
FL : L -> L

VARS
L L' :L
E: E

OK-EQNS
(NIL .L aL)
(L . NIL = L)
(FL(E)= FEW)
(FL(NIL)x NIL)
(WLE .L)= FEWE. FL(L)

JBO
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0*0 WE NOW INSTANTIATE IT TO A SQUARING FUNCTION ON LISTS
BUT MUST FIRST DEFINE THE SQUARING FUNCTION O'*

OBJ INTSQ / INT
OK-OPS

SQ : INT -> INT
VARS

N : INT
OK-EQNS

(SQ(N)= N * N)
JBO

IM (MAPLIST => NATLISTSQ)/ INTSQ
SORTS (E => INT)

(L => INTLIST)
OPS (FE : E -> E => SQ)
MI

RUN FL( . 2 . 3) NUR
AS INTLIST: (1 . 4 . 9)

RUN FL(3 . 6 . 17) NUR
AS INTLIST: (9 • 36 . 289)

000 WE NOW INSTANTIATE THIS TO AN ADD1 FUNCTION ON LISTS
'.3

IN (MAPLIST => INTLISTINC)/ INT
SORTS (E => INT)

(L => INTLIST)
OPS (FE : E -> E => INC)
MI

RUN FLO . 2 . 3) NUR
AS INTLIST: (2 , 3 . 4)

RUN FL(3 . 6 . 17) NUR
AS INTLIST: (4 . 7 • 18)

=End of file=
>EXIT
@POP

[PHOTO: Recording terminated Mon 13-Apr-81 6:58PM]

48



[PHOTO: Recording initiated Mon 13-Apr-81 7:04PM]

Link from OBJT, TTY 1

TOPS-20 Command processor 3A(32)-3
End of COMAND.CMD.1

@OBJT

*#*OBJT 12/2/79

>IN NAT5 NI

~'NATURAL NUMBERS 000
OBJ NAT
SORTS N
OK-OPS

Z -
S N -> N
__- : N N-> N

VARS
M P: N

OK-EQNS
(Z + M = M)
(5(H)+ P = S(H P))

JBO

RUN Z NUR
AS N: Z

RUN S(Z) NUR
AS N: S(Z)

RUN S(S(Z)) NUR
AS N: S(S(Z))

RUN S(S(S(Z))) NUR
AS N: S(S(S(Z)))

RUN S(S(S(S(S(Z))))) NUR
AS N: S(S(S(S(S(Z)))))

RUN S(S(S(S(S(S(Z)))))) NUR
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AS N: S(S(S(S(S(S(Z))))))

RUN S(S(S(S(S(s(S(Z))))))) NUR

AS N: S(S(S(S(S(S(S(Z)))))))

RUN s(S(S(S(S(S(S(S(Z)))))))) NUR

AS N: S(S(S(S(S(S(S(S(Z))))))))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR

AS N: S(S(S(S(S(S(S(S(Z))))))))

RUN S(S(Z))+ S(5(Z)) NUR

AS N: S(S(S(S(Z))))

RUN S(S(Z)). 5(S(S(Z))) NUR

AS N: S(S(S(S(S(Z)))))

0*0 THIS PARAMETERIZED OBJECT IDENTIFIES 5 AND 0 o
OBJ NODS
SORTS N
OK-OPS

Z : >N

S :N -> N
VARS

N :N
OK-EQNS

(S(S(S(S(S(Z))))): Z)
JBO

*"WE NOW INSTANTIATE IT TO THE NATURALS AS ABOVE *

IN (MODS => NAT5)
SORTS (N => NAT)
NI

RUN Z NUR
AS NAT: Z

RUN S(Z NUR
AS NAT: 5(Z

RUN 3(8(Z)) NUR
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AS HAT: S(S(Z))

RUN S(S(s(Z))) NUR
AS NAT: S(S(S(Z)))

RUN S(S(S(S(S(Z))))) NUB
AS NAT: Z

RUN S(S(s(s(S(s(Z)))))) NUR
AS NAT: S(Z

RUN S(S(S(S(s(S(S(Z))))))) NUR
AS NAT: 5(S(Z))

RUN S(S(S(S(S(s(S(S(Z)))))))) NUB
AS NAT: S(S(S(Z)))

RUN S(S(S(S(s(S(S(S(Z)))))))) NUB
AS NAT: 5(S(S(Z)))

RUN S(SCZ))+ S(S(Z)) NUR

?Warning: EXPRESSION CANNOT BE PARSED
RUN S(S(Z))+ S(S(S(Z))) NUR

?Warning: EXPRESSION CANNOT BE PARSED

*'WHAT HAPPENS IF WE TRY IT ON INT? *

IM (MOD5 => INT5)
SORTS (N => INT)
mi

RUN Z NUR
AS fINT: Z

RUN S(Z) NUR
AS INT: S(Z

RUN 5(5(Z)) NUB
AS INT: 8(8(Z))

RUN S(S(S(Z))) NUR
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AS INT: S(S(S(Z)))

RUN S(S(S(S(S(Z))))) NUB
AS INT: Z

RUN S(S(S(S(S(S(Z)))))) NUR
AS INT: S(Z)

RUN S(s(S(S(S(S(S(Z))))))) NUB
AS INT: S(S(Z))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUB
AS INT: S(S(S(Z)))

RUN S(S(S(S(S(S(S(S(Z)))))))) NUR
AS INT: S(S(S(Z)))

RUN S(S(Z))+ S(S(Z)) NUB

?Warning: EXPRESSION CANNOT BE PARSED
RUN S(S(Z))+ s(S(S(Z))) NUB

?Warning: EXPRESSION CANNOT BE PARSED

=End of file=
>IN NAT5S NI

OBJ NAT5S / INT
OK-EQNS

(5 = 0)
?Warning: INPUT ABNORMALLY TERMINATED
>EXIT
@POP

[PHOTO: Recording terminated Mon 13-Apr-81 7:05PM]
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1

F PARTIAL ALGEBRAS WITH EQUATIONALLY DEFINED DOMAINS

We have investigated partial algebras such that the domains of definition of

their operations can be equationally defined. These are very close in spirit
to error algebras[Goguen 77], on which the semantics of OBJ is based; the main
difference is that, for exceptional cases, an operation is just not defined,

instead of producing an error message as in the case of error algebras.

Partial algebras, with equationally defined domains of definition for their

operations have a strong expressive power. Moreover, they have initial

algebras, relatively free algebras, and all limits and colimits. This

supports an initial algebra semantics and many useful constructions.

We shall illustrate the concept with two examples. The first is a version of

stack of integers as a partial algebra with equationally defined domains. We

give the specification in an OBJ-like style[Goguen & Tardo 79), and will

explain our notation below.
OBJ STACK / INTEGER BOOL
SORTS STACK
VARS S: STACK N: INTEGER
OPS EMPTY : -> STACK

ISEMPTY : STACK -> BOOL
PUSH : INTEGER, STACK -> STACK
POP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER
TOP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER

EQNS ISEMPTY(EMPTY) = T
ISEMPTY(PUSH(N,S)) = F
POP(PUSH(S,N)) = S
TOP(PUSH(S,N)) = N

JBO

The only operations that are partial are POP and TOP. Both are defined

exactly on those values of the STACK variable S such that the .eguatio
ISEMPTY(S) = FALSE holds. this is represented by the notation
POP : STACK : S : (ISEMPTY(S) = FALSE) -> INTEGER

and similarly for TOP.

our next definition is the specification of the data type path.
OBJ PATH
SORTS NODE PATH
VARS A B C : NODE

F G H : PATH
OPS ID : NODE -> PATH

DON : PATH -> NODE
COD : PATH -> NODE
_._ : PATH : G , PATH : F : (DOM(G) COD(F)) -> PATH
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EQNS DO(ID(A)) = A
COD(ID(A)) = A
F . ID(A) = F
ID(A) . F = F
(F . G) . H F . (G H)

JBO

The only partial operation here is the composition of paths , which is

defined exactly for those values of the variables F,G such that the e
DOM(G) = COD(F)

holds. (Note that the initial algebra of this specification is empty, but

constants of types NODE and PATH can be added. Such constraints will specify

a given graph, and then the initial algebra is the algebra of paths on that

graph.)

In general, not only equations, but also Horn-like conditional equations are

allowable. There is a precise formal definition of the concept of partial

algebra with equationally defined domains satisfying a certain set of Horn

axioms which can be given in terms of "enially A1Sor=g therie" as

defined below[Gabriel Ulmer 71]. These generalize total algebras, and use the

jg theory approach[Lawvere 63]. Algebraic theories have also been used

by[Burstall & Goguen 77, Burstall & Goguen 80] for the semantics of their

specification language CLEAR.

Definition 1: A small category T is an essentially Agghrlai rthory if T has

all finite limits (i.e. finite products and equalizers). A functor H: T -> T'

between two essentially algebraic theories is a morphism of essentially

algebraic theories if and only if it preserves limits.

For instance, the specification of the data type PATH above corresponds to a

theory TPATH, in which each object is a finite limit of the objects NODE and

PATH. The object COMPOSABLE (where the operation of path composition is

defined) is the equalizer

'r, IDOM
-, PATH

COMPOSABLE - PATH XPATH PATH
- PATH

Ir2  COD

and the equations correspond to forcing certain diagrams to commute in T.
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Definition 2: A category B is a category al p a l r =h

gqu onal.U defLned Agdao"ins if and only if B is equivalent to the category

AlgT = lim Funct(T,Set) of (finite) limit preserving functors from T to the

category of sets, for T some essentially algebraic theory.

If S C: Ob(T) is a set of objects of T such that any other object is a finite

limit of objects in S, we say that S generatsA T. Then we can define a

forgetful functor Us from AlgT to the category S-Set of S-sorted sets, given

on objects by US(A)s = A(s), for every a in S. For example, S = (NODE, PATH)

generates TPATH, and US is in this case the functor sending each PATH data

type to its NODE and PATH sets.

Theorem 3: For T an essentially algebraic theory, Alg T is complete and

cocomplete (in particular it has an initial object). If S C Ob(T) generates

T, then the functor Us: AlgT -> S-Set has a left adjoint; i.e., there are frJ

There are also frf exensions. For instance the specification

OBJ GRAPH
SORTS NODE EDGE
OPS DON : EDGE-> NODE

COD : EDGE -> NODE
JBO

has an associated (essentially algebraic) theory TGRAPH which can be embedded

in TPATH, so that the injection J: TPATH -> TGRAPH is a morphism of theories.

This induces a functor Uj: AlgT -> AlgT by composition with J: A !-> A.J; this

functor considers every PATH-algebra as a GRAPH-algebra by forgetting about

the operations of composition and identity. U. has a left adjoint FJ, which

gives the free extension of each graph to its algebra of paths. In general we

have

Theorem 4: Let H: T -> T' be a morphism of theories, and let UH: AlgT, ->

Alg T be the functor induced by composition with H. Then UH has a left adjoint.

Our ultimate goal in this area is to extend the results on rewrite-rules known
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for total algebras to the case of partial algebras with equationally defined

domains, as a first step toward further extending these results to error

algebras, and in particular obtaining for error algebras the powerful

structural results mentioned above. This will provide theoretical support for

some of the more experimental features of OBJ.

Using results of[Coste 77) we have isolated a deductive system for partial

algebras with equationally defined domains which is both consistent and

complete, and we are in the process of integrating a version of that deductive

system with OBJ-style specifications like those given above. We also plan to

study the relationship to the work of[Kaphengst & Reichel 77, Reichel &

Hupbach & Kaphengst 80], and to the categorical work ofEGabriel Ulmer 71]. We

believe that many of their infinitary constructions will specialize to the

finitary case, which is important for the semantics of partial algebras with

equationally defined domains, and for error algebras.
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G STRICT ERROR ALGEBRAS DEFINED BY TESTS

We assume familiarity with error algebras[Goguen 77]. For the case of strict

error algebras, i.e., error algebras where all the error elements reduce to an

error constant E, the meaning of OK and ERROR equations can be captured as

ordinary equations on the whole algebra if we introduce a ternary operation

IFE(_,_,_), such that IFE(a,b,c) equals b in case a is the error constant and

equals c otherwise. For example, if we want the OK part to satisfy the axioms

of group theory we can impose equations such as
x . (x)- = IFE(x,E,l)

x 1 = x

which correspond to the axiom about the inverse and neutral elements

respectively. If we had just imposed
x -1=1x.x-l=1

as an ordinary equation, this would have given
E E . E-1 = 1

and then every element would collapse to the error element, because
x . 1 = x . E = E.

For any set P of OK-equations and ERROR equations encoded in this form, we

have given a free construction, which associates to each strict error

I-algebra another one satisfying F, and having the obvious universal

property. We have also proved that this process is conservative in that, if

the Z-operations restrict to the OK part, and we only have OK-equations, this

construction is equivalent to imposing first the OK equations as ordinary

equations on the OK part, and then adding an error element. The following is

a summary of our definitions and results.

Definition 1: A strict (error) set is a pair (A,E), where E belongs to A. A

function f:A -> B between two strict error sets is a Atrict (error) function

if and only if either:

1. JAI = BI = 1;

2. 1B1 = 1; or

3. none of the above holds but f'1{E} = {E).

For an index set S of sorts, an S-sorted atrLat error iaL is a family {(A.,

E)},s S of strict error sets, and similarly an S-sorted strict error funtin
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is a family of strict error functions.

Definition 2: For I an S-sorted signature of operations, a Atrin (error)

Talgahra is an S-sorted strict error set A = t(As,E)J S together with a

I-algebra structure on A such that every operation aElw t gives as result the

error element of Ai whenever one of its operands is an error element; i.e.,

(i) 6(xl,...,E,...,xn) = E

for E in any place i, for 1 < i < n. A strji (error) 7-homomorhi= is a

Z-homomorphism that is also a strict error function.

Note that every strict error I-algebra can be made into a IFE-algebra, for

ZIFE the signature obtained from I by adding a constant E for each sort s in

S, and a ternary operation IFE: s,t,t -> t for each pair of sorts s, t in

S. Given a strict error I-algebra, we interpret the constants E as error

elements, and we define IFE(a,b,c) to be equal to b if A = E, and to be equal

to c otherwise. With this definition every strict error homomorphism becomes

a ZIFE-homomorphism.

Theorem 1: Let P be a set of ZIFE equations, and for every 1IFE algebra A

let A/P be the quotient algebra obtained from A by imposing the equations in

I. Then if A is a strict error I-algebra A/1' is also a strict error

I-algebra, the canonical quotient q: A -> A/I is a strict error homomorphism,

and for any strict error Z-homomorphism f: A -> B such that B satisfies F as

a ZIFE-algebra, there exists a unique strict error homomorphism r:A/I' -> B

such that r.q = f.

To each ordinary Z-algebra A we can associate a strict error I-algebra AE by

adding a new element E to each sort A., and extending the operation 0 in I in

the obvious way. The following theorem shows that the construction of Theorem

I can be seen as a "conservative extension" of the construction of imposing

ordinary 2-equations when only OK-equations are imposed.
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Theorem 2: Let A be a set of I-equations such that, for each equation, the

set of variables occurring in its right hand side is contained in the set of

variables occurring in its left hand side. Let F be the set of IIFE

equations obtained from those in A as follows: for each u = v in A, if the

variables occurring in u and v are the same, u = v belongs to '; otherwise
u = IFE(u,E,v)

belongs to F. Then for every I-algebra A there exists a natural isomorphism

of strict error I-algebras
(A/A)E (AE)/I,"
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H MODEL-THEORETIC CHARACTERIZATION OF RELATIONAL CLASSES OF PROGRAM SCHEME

INTERPRETATIONS

Making operations and tests into elements of a signature of operations 2, any

interpretation of a program scheme can be seen as a continuous I-algebra,

i.e., as an u-cpo together with a 2-algebra structure such that the

operations preserve limits of u-chains[Goguen, Thatcher, Wagner & Wright

77, Nivat 75]. For the equivalence problem of program schemes to be

tractable, it is convenient to consider not all interpretations, but just

those in a class defined by some natural property.

One such case of particular interest, because it allows proofs by computation

induction, is the relational classes, i.e., the classes of algebras A such

that there is some set of pairs of finitary I-expressions (u,v) such that
u(al,...,an) v(al,....an)

for every (al,.. .an)eAn (where n is the number of distinct variables occurring

in u or v) fo each (u,v). In [Meseguer 81] those classes have been

characterized model-theoretically by the following "Birkhoff-like" result:

Theorem 1: A class of continuous 2-algebras is relational if and only if it

is closed under

(i) products

(ii) (continuous) full subalgebras

(iii) (continuous) quotients, and

(iv) algebraic completions.
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